Synthesis and Crystal Structure of the New Complex Cobalt and Nickel Oxide $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$

O. A. Drozhzhin, F. S. Napol'skii, S. Ya. Istomin, and E. V. Antipov

Department of Inorganic Chemistry e-mail: drozhzhin@icr.chem.msu.ru

Received February 27, 2006

Abstract—The complex cobalt and nickel oxide $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$ has been synthesized by the citrate method. The oxygen content of the oxide has been determined by iodometric titration. The crystal structure of the compound has been refined using X-ray powder diffraction data ($a = 3.7951(2)$ Å, $c = 19.700(1)$ Å, $\chi^2 =$ 1.15, $R_F^2 = 0.0586$, $R_p = 0.0365$, $R_{wp} = 0.0462$. $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$ has the structure of the second member of the Ruddlesden–Popper series $A_{n+1}B_nO_{3n+1}$.

DOI: 10.3103/S0027131407030121

Interest in complex cobalt oxides $Sr_{1-x}R_xCoO_{3-y}$ with a perovskite structure stems from the possibility of their use for producing electrodes for high- and lowtemperature fuel cells and as oxygen-permeable membranes [1, 2]. It was recently found that the Sr^{2+} and R^{3+} cations in the crystal structure of some cobaltites $Sr_{1-x}R_xCoO_{3-y}$ (R = Eu–Ho, Y) are ordered, which entails ordering of oxygen vacancies and leads to the formation of so-called 314 phases $Sr_3RCo_4O_{10.5}$ [3]. The latter have some interesting physical properties. In particular, depending on the oxygen content, the 314 phases are either antiferromagnets with semiconducting properties $(Sr_{2/3}Y_{1/3}CoO_{2.66})$ or ferromagnets with metallic conductivity $(Sr_{2/3}Y_{1/3}CoO_{2.70})$ [4, 5]. Therefore, it is of interest to synthesize and study the crystal structure and electrophysical properties of the 314 phases in which cobalt is partially substituted by other transition-metal cations, for example, by nickel. In this paper, we report the synthesis and crystal structure of the new phase $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$.

EXPERIMENTAL

Samples of $Sr_3YCo_{4-x}Ni_xO_{10.5}$ (0 ≤ *x* ≤ 3, ∆*x* = 1) were synthesized by the citrate method. Calculated amounts of yttrium oxide were dissolved in melted citric acid taken in a 50-fold molar excess. After the melt became transparent, $S_rCO₃$ (pure for analysis) and, then, $(NiOH)_{2}CO_{3}$ (pure for analysis) were introduced. After they were dissolved, a solution of $Co(NO_3)$. $6H₂O$ (pure for analysis) in a minimal possible amount of water was added to the melt. The mixture was heated by a gas burner until a brown solid mass was formed, which was annealed at 650°C for 24 h. Then, the resulting powder was pressed in tablets and annealed at 1100°C for 48 h. The phase composition of samples was monitored by X-ray powder diffraction. X-ray powder diffraction pattern were obtained on an FR-552 high-resolution focusing monochromator camera (Cu $K_{\alpha 1}$ radiation, $\lambda = 1.54060$ Å) at room temperature. Germanium was added as an internal reference. To refine the crystal structure of the synthesized oxide, diffraction data obtained on a STADI-P (STOE) diffractometer was used (Cu $K_{\alpha 1}$, $\lambda = 1.54060$ Å).

The oxygen content in the single-phase samples obtained was determined by iodometric back titration. A small amount of the sample (of about 0.03 g) was placed in a flask containing 20 mL of a 20% KI solution. The solution was acidified with 2 mL of HCl (conc.), sealed with a rubber stopper, and left in the dark until the sample was completely dissolved. The released iodine was titrated with a standard $Na₂S₂O₃$ solution.

The cationic composition was determined using electron probe X-ray microanalysis (EPXMA) on a JEOL JSM-820 scanning electron microscope (accelerating voltage, 15–20 kV) equipped with a LINK AN10000 microanalysis system.

High-resolution electron diffraction and microscopy were carried out on a JEOL JEM 3010 UHR transmission microscope (Stockholm University, Sweden).

RESULTS AND DISCUSSION

X-ray powder diffraction showed that all $Sr_3YCo_{4-x}Ni_xO_{10.5}$ samples ($0 < x \le 3$, $\Delta x = 1$) were not

Fig. 1. Calculated X-ray powder diffraction patterns for $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$ at (a) $g = 0.0$, (b) $g = 0.5$, and (c) $g = 1.0$.

single-phase. The sample with the composition $Sr₃YCo₂Ni₂O_z$ contains, in addition to nickel oxide (NiO), a tetragonal phase with an *I*-centered lattice and the following unit cell parameters: $a = 3.8012(5)$ Å and $c = 19.754(2)$ Å. In the search for an isostructural compound, the $Sr_2Y_{0.8}Ca_{0.2}Co_2O_6$ phase was revealed [6].

Assuming that the oxidation states of nickel and cobalt in the new tetragonal phase are, respectively, +2 and +3 and taking into account the Sr/Y ratio in the initial sample, we derived its composition

Table 1. Crystallographic data for $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$

Space group	I4/mmm
Unit cell parameters, Å	$a = 3.7951(2)$ $c = 19.700(1)$
Reliability factors	χ^2 = 1.15; R_F^2 = 0.0586; $R_p = 0.0365$, $R_{wp} = 0.0462$

 $Sr_{2.25}Y_{0.73}Co_{1.25}Ni_{0.75}O_6$. A sample of this composition was synthesized under the same conditions. The X-ray powder diffraction pattern of the single-phase sample was completely indexed in terms of a tetragonal *I*-centered cell ($a = 3.7944(5)$ Å and $c = 19.695(4)$ Å). The cationic composition of the resulting phase was confirmed by EPXMA: $Sr : Y : Co : Ni = 49(3) : 14(2)$: $24(3) : 11(2)$ (calculated ratio, Sr : Y : Co : Ni = 45 : 15 : 25 : 15). Standard deviations calculated from the results of eight measurements are parenthesized. Iodometric titration showed that the oxygen composition of the phase corresponds to the formula $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84(1)}$. To change the oxygen content of the phase, the sample was annealed in a nitrogen atmosphere at 800°C. According to iodometric titration, the oxygen content of the resulting compound decreased and corresponded to the formula $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.57(1)}$. The unit cell parameters of the phase after heat treatment in nitrogen were $a =$ 3.8195(5) Å and $c = 19.652(4)$ Å. The same trends in the unit cell parameters with a decrease in the oxygen content were observed for $(Sr, Y, Ca)Co₂O_{6 + y}$ [6].

To study the homogeneity range of the $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84} phase, we synthesized$ $Sr_2YCoNiO_6$ and $Sr_{1.75}Y_{1.25}Co_{0.75}Ni_{1.25}O_6$ samples. According to X-ray powder diffraction, both samples are multiphase and contain, in addition to the tetragonal phase $(Sr, Y)_{3}(Co, Ni)_{2}O_{6+v}$, a large amount of impurity phases.

The refinement of the crystal structure of $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$ was carried out with the GSAS program [7]. The atomic coordinates in the crystal structure of $Sr_2Y_{0.8}Ca_{0.2}Co_2O_6$ [6] were taken as the initial ones. The oxygen atom displacement parameters were refined in the block. Taking into account close atomic scattering factors of the cations $Sr^{2+}(Z=38)$ and Y^{3+} (*Z* = 39), as well as Co (*Z* = 27) and Ni (*Z* = 28), only Y and Co cations were placed in the corresponding positions. The refinement of the structure converged with $R_F^2 = 0.0918$ and $\chi^2 = 1.26$. The presence of the extra (as compared to the stoichiometric composition) oxygen atoms in the structure allowed us to assume that they occupy the 2*a* (0,0,0) position. The occupancy of this position $(g = 0.84)$ was calculated based on the iodometric titration data and was not refined. As a result, the residual factors considerably decreased $(R_F^2 =$ 0.0586 and $\chi^2 = 1.15$). The theoretical X-ray powder diffraction patterns of $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6+v}$ were calculated for three different oxygen contents $(y = 0)$, 0.5, and 1.0). The oxygen content was varied by changing the occupancy of the $O(3)$ position ($g = 0.0, 0.5$, and 1.0, respectively). The calculated X-ray powder diffrac-

tion patterns are shown in Fig. 1. The X-ray diffraction

patterns show that there is a correlation between the occupancy of the $O(3)$ position and small-angle reflection intensities.

Table 1 presents the crystallographic data for $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$. The final atomic coordinates, site occupancies, and atomic displacement parameters are summarized in Table 2. Selected interatomic distances are listed in Table 3. Figure 2 shows the experimental, calculated, and difference X-ray powder diffraction profiles for $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84(1)}$.

The $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$ sample was studied by electron diffraction and high-resolution transmission electron microscopy. Electron diffraction confirmed the correctness of the choice of the space group and unit cell parameters. The electron diffraction image along the [010] direction is shown in Fig. 3. The lack of superstructure reflections points to the absence of ordering of oxygen vacancies in the crystal structure of $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$. The electron diffraction image along the [010] direction and the corresponding Fourier transform of a part of this image are shown in Fig. 4. The crystal structure of the compound $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$ is an oxygen-deficient analogue of the structure of the second member of the Ruddlesden–Popper series $A_{n+1}B_nO_{3n+1}$ (Fig. 5). Among cobalt complex oxides, $Sr_3Co_2O_{7-v}$ (0.94 $\leq y \leq 1.22$) [8] and $Sr_2Ln_{0.8}Ca_{0.2}Co_2O_{6+y}$ (Ln = Sm, Eu, Gd, Tb, Dy, Ho, and Y) [9] have the same crystal structure. Oxygen vacancies in the structures of these compounds are located in the plane passing through the axial oxy-

Table 2. Atomic coordinates and isotropic thermal displacement parameters for $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$

Atom	Position	g	\mathcal{X}	y	Z_{\cdot}	U_{iso} , \AA^2
Y ₁	2b	1.0	0.0	0.0	0.5	0.035(3)
Y ₂	4e	1.0	0.0	0.0	0.3192(2)	0.026(2)
Co ₁	4e	1.0	0.0	0.0	0.0979(4)	0.024(2)
O ₁	4e	1.0	0.0	0.0	0.196(1)	0.050(4)
O ₂	8g	1.0	0.0	0.5	0.0823(7)	0.050(4)
O ₃	2a	0.84	0.0	0.0	0.0	0.050(4)

Table 3. Selected interatomic distances (Å) in the structure of $\text{Sr}_{2.25}\text{Y}_{0.75}\text{Co}_{1.25}\text{Ni}_{0.75}\text{O}_{6.84}$

gen atoms linking two neighboring layers of $CoO₆$ octahedra:

\ldots AO CoO₂ AO_{1 – *x*} \Box *r* CoO₂ AO OA...

where A is Sr or Ln and \Box is the oxygen vacancy. As a result, the structure has two crystallographically different positions for A cations with the coordination number (CN) 9 and 8 (for the stoichiometry $A_2Co_2O_6$).

Fig. 2. Experimental, calculated, and difference profiles for $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84(1)}$.

MOSCOW UNIVERSITY CHEMISTRY BULLETIN Vol. 62 No. 3 2007

Fig. 3. Electron diffraction image along the [010] direction.

Fig. 4. Electron diffraction image along the [010] direction and the corresponding Fourier transform.

In particular, positions with the smaller CN $(CN = 8)$ in $Sr_2Y_{0.8}Ca_{0.2}Co_2O_6$ [6] are occupied by small cations Ca^{2+} and Y^{3+} , whereas positions with CN= 9 are occupied by large Sr²⁺ cations. The coordination polyhedron of the cobalt atoms in this case is a square pyramid. In the structure of $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$, only 16% of the oxygen positions are vacant. In this case, only 16% of the Co/Ni cations have a square-pyramidal coordination environment, whereas the rest of the Co/Ni atoms have an octahedral environment. The mean formal oxidation state of Co/Ni in $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$ is +3.47. It should be noted that this compound was synthesized in air ($p_{O_2} = 0.2$ atm) and has a high oxygen content (~7). For example, a close oxygen content (6.79) is achieved in cobaltites $(Sr, Y, Ca)_{3}Co_{2}O_{6+y}$ only when the synthesis is carried out under high pressure [6], whereas attempts to increase the oxygen content in

Fig. 5. Crystal structure of the compound $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$

 $Sr_3Co_2O_{6-y}$ lead to the decomposition of the phase [8]. Lanthanum nickelates $La_2Ni_2^{+2.42}O_{6.92}$ with the structure of the second member of the Ruddlesden–Popper series, synthesized at high temperatures (1200°C) in air [10], have a high oxygen content. It is likely that the high oxygen content in nickel-substituted cobaltite with the structure of $Sr_{2.25}Y_{0.75}Co_{1.25}Ni_{0.75}O_{6.84}$ is caused by the presence of Ni^{3+} for which $CN = 6$ is stable.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 05-03-32844.

REFERENCES

1. Thursfield, A. and Metacalfe, I.S., *J. Mater. Chem.*, 2004, vol. 14, p. 2475.

- 2. Bouwmeester, H.J.M. and Burggraaf, A.J., *Fundamentals of Inorganic Membrane Science and Technology*, Burggraaf, A.J. and Cot, L., Eds., Amsterdam, 1996, p. 435.
- 3. Istomin, S.Ya., Grins, J., Svensson, G., et al., *Chem. Mater.*, 2003, vol. 15, p. 4012.
- 4. Maignan, A., Hebert, S., Caignaert, V., et al., *J. Solid State Chem.*, 2005, vol. 178, p. 868.
- 5. Kobayashi, W., Ishiwata, S., Terasaki, I., et al., *Phys. Rev., B: Condens. Matter*, 2005, vol. 72, p. 104408.
- 6. Yamaura, K., Huang, Q., and Cava, R.J., *J. Solid State Chem.*, 1999, vol. 146, p. 277.
- 7. Larson, A.C. and von Dreele, R.B., "General Structure Analysis System (GSAS)". Los Alamos National Laboratory Report LAUR 86-748 (2000); Toby, B.H., EXPGUI, a Graphical User Interface for GSAS, *J. Appl. Crystallogr.*, 2001, vol. 34, p. 210.
- 8. Dann, S.E. and Weller, M.E., *J. Solid State Chem.*, 1995, vol. 115, p. 499.
- 9. Yamaura, K., Huang, Q., and Cava, R.J., *J. Solid State Chem.*, 1999, vol. 146, p. 277.
- 10. Zhang, Z., Greenblatt, M., and Goodenough, J.B., *J. Solid State Chem.*, 1994, vol. 108, p. 402.